对基于eg降尺度的中国区域性暴雨事件模拟评估

1 南京信息工程大学大气科学学院,南京 210044

2 南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室,南京 210044

3 中国气象局国家气候中心,北京100081

1 School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China

3 National Climate Center, China Meteorological Administration, Beijing 100081, China

作者简介 About authors

基于区域气候模式RegCM4对4个全球气候模式动力降尺度模拟(分别记为CdR、EdR、HdR、MdR)以及高分辨率格点观测数据CN05.1的日降水数据,利用“追踪式”客观识别方法,对1981—2005年中国区域性暴雨事件进行了识别,并评估了模式对其气候特征的模拟性能。结果表明:4个动力降尺度模拟以及多模式集合能较好地模拟区域性暴雨事件发生频次、平均持续时间、平均降水量、平均影响范围和综合强度的年内分布特征以及气候平均值。观测的区域性暴雨事件持续时间、平均降水量、平均影响范围和综合强度在不同区间的频率分布特征以及区域性暴雨事件的累计频次、累计持续时间和累计降水量的空间分布特征也能得到很好地再现。模拟值与观测的空间相关系数都在0.9以上,且均方根误差不超过0.4。不过,相对而言,模式模拟的区域性暴雨事件频次略少,主要由对中度区域性暴雨事件低估所致;模拟的平均持续时间和平均降水量略偏高,而平均影响范围略偏小。综合强度方面,除HdR外,其余模拟均有所高估,尤其是MdR。在频率分布特征和空间分布方面,CdR的模拟性能低于其他模拟。多模式集合模拟的平均持续时间、平均降水量、平均影响范围和综合强度的相对误差分别为13%、2%、-11%和3%。关键词:区域性暴雨事件;动力降尺度;模拟评估;气候特征

基于区域气候模式RegCM4对4个全球气候模式动力降尺度模拟(分别记为CdR、EdR、HdR、MdR)以及高分辨率格点观测数据CN05.1的日降水数据,利用“追踪式”客观识别方法,对1981—2005年中国区域性暴雨事件进行了识别,并评估了模式对其气候特征的模拟性能。结果表明:4个动力降尺度模拟以及多模式集合能较好地模拟区域性暴雨事件发生频次、平均持续时间、平均降水量、平均影响范围和综合强度的年内分布特征以及气候平均值。观测的区域性暴雨事件持续时间、平均降水量、平均影响范围和综合强度在不同区间的频率分布特征以及区域性暴雨事件的累计频次、累计持续时间和累计降水量的空间分布特征也能得到很好地再现。模拟值与观测的空间相关系数都在0.9以上,且均方根误差不超过0.4。不过,相对而言,模式模拟的区域性暴雨事件频次略少,主要由对中度区域性暴雨事件低估所致;模拟的平均持续时间和平均降水量略偏高,而平均影响范围略偏小。综合强度方面,除HdR外,其余模拟均有所高估,尤其是MdR。在频率分布特征和空间分布方面,CdR的模拟性能低于其他模拟。多模式集合模拟的平均持续时间、平均降水量、平均影响范围和综合强度的相对误差分别为13%、2%、-11%和3%。

关键词:区域性暴雨事件;动力降尺度;模拟评估;气候特征

Based on the Regional Climate Model Version 4 (RegCM4) simulations (named CdR, EdR, HdR, and MdR, respectively) dynamically downscaling from four global climate models (GCMs) as well as the observed high-resolution grid dataset CN05.1, the regional rainstorm events that occurred in China during 1981-2005 were identified by using a “tracing” objective method. On this basis, the fidelity of the RegCM4 downscaling in simulating the climate features of regional rainstorm events in China was evaluated. The results show that the four RegCM4 simulations and their ensemble can reasonably capture the observed annual cycles and climate mean values of the frequency, duration, rainfall amount, extent, and comprehensive intensity of regional rainstorm events averaged in China. They can also well reproduce the probability of duration, rainfall amount, extent and comprehensive intensity of regional rainstorm events in different bands and the climatologically spatial distribution of accumulative frequency, duration and rainfall amount of regional rainstorm events in the observation. The spatial correlations of the simulations with the observation are all above 0.9 and the root-mean-square errors are generally below 0.4. However, the simulations slightly underestimate the frequency of regional rainstorm events, mainly due to the underestimation of moderate regional rainstorm events. The average duration and average rainfall amount are slightly overestimated, while the average extent is slightly underestimated. The comprehensive intensity is overestimated by the simulations (especially by MdR) with the exception of HdR. For spatial distribution, the performance of CdR is relatively lower than that of other simulations. The relative errors of the ensemble simulation with reference to the observation are 13%, 2%, -11%, and 3% for the average duration, rainfall amount, extent, and comprehensive intensity of regional rainstorm events, respectively.Keywords:Regional rainstorm event;Dynamical downscaling;Model evaluation;Climate feature

Based on the Regional Climate Model Version 4 (RegCM4) simulations (named CdR, EdR, HdR, and MdR, respectively) dynamically downscaling from four global climate models (GCMs) as well as the observed high-resolution grid dataset CN05.1, the regional rainstorm events that occurred in China during 1981-2005 were identified by using a “tracing” objective method. On this basis, the fidelity of the RegCM4 downscaling in simulating the climate features of regional rainstorm events in China was evaluated. The results show that the four RegCM4 simulations and their ensemble can reasonably capture the observed annual cycles and climate mean values of the frequency, duration, rainfall amount, extent, and comprehensive intensity of regional rainstorm events averaged in China. They can also well reproduce the probability of duration, rainfall amount, extent and comprehensive intensity of regional rainstorm events in different bands and the climatologically spatial distribution of accumulative frequency, duration and rainfall amount of regional rainstorm events in the observation. The spatial correlations of the simulations with the observation are all above 0.9 and the root-mean-square errors are generally below 0.4. However, the simulations slightly underestimate the frequency of regional rainstorm events, mainly due to the underestimation of moderate regional rainstorm events. The average duration and average rainfall amount are slightly overestimated, while the average extent is slightly underestimated. The comprehensive intensity is overestimated by the simulations (especially by MdR) with the exception of HdR. For spatial distribution, the performance of CdR is relatively lower than that of other simulations. The relative errors of the ensemble simulation with reference to the observation are 13%, 2%, -11%, and 3% for the average duration, rainfall amount, extent, and comprehensive intensity of regional rainstorm events, respectively.

Keywords:Regional rainstorm event;Dynamical downscaling;Model evaluation;Climate feature

本文引用格式

其中:n为计算频率分布时划分的总区间数,Xo,i和Xs,i分别代表观测和模拟中某一指标在第i个区间的发生频率。S值越接近1,表示模拟效果越好。

表11981—2005年平均的中国区域性暴雨事件发生频次以及不同等级事件发生频次占总频次的百分比

Table 1  Frequency of regional rainstorm events in China averaged from 1981 to 2005 and the percentages of different category of regional rainstorm events to total events

表21981—2005年中国区域性暴雨事件指标的气候平均值

Table 2  Climate mean of the metrics for regional rainstorm events in China averaged from 1981 to 2005

注:1)影响范围用格点数来表示。

图11981—2005年观测和模拟的各月区域性暴雨事件频次(a)、持续时间(b)、平均降水量(c)、平均影响范围(d)和综合强度(e)的占比分布

Fig. 1Monthly distribution of the percentage of frequency (a), duration (b), average rainfall amount (c), average extent (d), and average comprehensive intensity (e) of regional rainstorm events during 1981-2005

图21981—2005年模拟和观测的中国区域性暴雨事件持续时间(a)、平均降水量(b)、平均影响范围(c)和综合强度(d)的频率占比分布

Fig. 2Frequency percentage distributions for duration (a), average rainfall amount (b), average extent (c), and average comprehensive intensity (d) of regional rainstorm events during 1981-2005

表31981—2005年模式模拟的中国区域性暴雨事件各指标频率分布的S评分统计

Table 3  S score of the frequency percentage distribution for each metric of regional rainstorm events in China during 1981-2005

图3观测(a)和MME模拟(b)的1981—2005年平均的区域性暴雨事件年累计频次空间分布以及MME模拟的相对误差(c)

注:(c)图左下角值为相对误差绝对值<0.4的面积比例,下同。

Fig. 3Observed (a) and MME simulated (b) climatological distribution of the accumulative frequency of regional rainstorm events during 1981-2005 and the relative errors of the MME simulation (c) with reference to the observation (the number in the Fig. (c) indicates the proportion of areas where the absolute relative error is less than 0.4)

图4同图3,但为区域性暴雨事件年累计持续时间

Fig. 4Same as Fig. 3, but for the accumulative duration of regional rainstorm events

图5同图3,但为区域性暴雨事件年累计降水量

Fig. 5Same as Fig. 3, but for the accumulative rainfall amount of regional rainstorm events

图61981—2005年平均的中国区域暴雨事件累计频次、持续时间和降水量的泰勒分布图

注:1, MME;2, CdR;3, EdR;4, HdR;5, MdR。

Fig. 6Taylor diagram for accumulative frequency, duration and rainfall amount of regional rainstorm events in China during 1981-2005 with reference to the observation

本文基于区域气候模式RegCM4对4个全球气候模式降尺度模拟输出的逐日降水结果,利用“追踪式”客观识别方法,对1981—2005年中国区域性暴雨事件进行了识别。在此基础上,通过与高分辨率CN05.1降水格点数据识别出的区域性暴雨事件进行对比,评估了模式对中国区域性暴雨事件的模拟性能。总体来讲,RegCM4动力降尺度模式能够较好地模拟出中国区域性暴雨事件的气候态分布特征,这为下一步利用其开展区域性暴雨事件预估研究奠定了基础。具体结论如下。

(1) MME和4个单模式模拟的中国区域性暴雨事件的发生频次、持续时间、降水量、影响范围和综合强度的气候平均值与观测比较吻合。不过,相对来讲,模式模拟的区域性暴雨事件频次略偏少,主要因低估了中度区域性暴雨事件所致;模拟的平均持续时间和平均降水量略偏多,而平均影响范围略偏小;综合强度方面,除HdR外,其余模式均有所高估,尤其是MdR。

(2) MME和4个单模式能较好地模拟出区域性暴雨事件的发生频次、平均持续时间、平均降水量、平均影响范围和综合强度的逐月分布特征。观测的区域性暴雨事件持续时间、平均降水量、平均影响范围和综合强度在不同区间的频率分布特征也能得到很好的模拟,除CdR模拟的平均降水量分布的S评分为0.78外,其余模拟的S评分均>0.85。

(3) MME和4个单模式能很好地模拟多年平均的区域性暴雨事件年累计频次、累计持续时间和累计降水量的空间分布特征。模拟与观测的空间相关系数都在0.9以上,且均方根误差不超过0.4。相比而言,CdR的模拟能力略低于其他模式。

Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation

Trends in total precipitation and frequency of daily precipitation extremes over China

Trend of extreme precipitation events over China in last 40 years

Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset

Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models

Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles

Comparison of CMIP6 and CMIP5 models in simulating climate extremes

Projected risk of flooding disaster in China based on CMIP5 models

Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation

An objective identification technique for regional extreme events

Changes in regional heavy rainfall events in China during 1961-2012

The characteristics of regional heavy precipitation events over eastern monsoon China during 1960-2013

中国区域性极端降水事件及人口经济暴露度研究

A study on regional extreme precipitation events and the exposure of population and economy in China

1961—2016年我国区域暴雨过程的客观识别及其气候特征

Objective identification and climatic characters of the regional rainstorm event in China from 1961 to 2016

Evaluation of a high-resolution historical simulation over China: climatology and extremes

Performance of RegCM4 over major river basins in China

Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: comparison between RCM downscaling and the driving GCM

Improved performance of high-resolution atmospheric models in simulating the East-Asian summer monsoon rainbelt

RegCM4: model description and preliminary tests over multiple CORDEX domains

Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model

Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations

Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations

一套格点化的中国区域逐日观测资料及与其它资料的对比

A gridded daily observation dataset over China region and comparison with the other datasets

Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods

Temporal-spatial monitoring of extreme precipitation event: determining simultaneously the time period it lasts and the geographic region it affects

Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions

Summarizing multiple aspects of model performance in a single diagram

East Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 models

Reliability of climate models for China through the IPCC Third to Fifth assessment reports

A diagram for evaluating multiple aspects of model performance in simulating vector fields

Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations

Multimodel ensemble projection of precipitation in Eastern China under A1B emission scenario

Evaluation of global climate models in simulating extreme precipitation in China

Analyses of extreme climate events over China based on CMIP5 historical and future simulations

Development of climate and Earth System Models in China: past achievements and new CMIP6 results

THE END
0.南方7省区将现大暴雨局地特大暴雨,各地都有哪些应急措施?每年的夏季我国的南部地区都会迎来特大的暴雨或者是暴风雨的情况,遍布区域广,涉及的地区比较多,比如说江南北部,江淮南部,或者是平原地区都会存在暴雨,广东,广西,云南深圳等沿海城市,经历暴雨的频次要比内陆的地区大了许多,有一些临海城市或者是长江经过的地区都会有遇到暴雨的可能。有些地区暴雨来的快,去的快,影响不会 jvzquC41yy}/fj2swct/pny1yc5bvly{jeizjl~cvcip@3jvor
1.中国气象局:近十年极端降水发生频次和强度显著增加暴雨灾害“南北并重第二方面,极端降水发生频次和强度都显著增加,特别是最近十年,北方地区局地强降水致灾强度趋强,形成了暴雨灾害“南北并重”的格局。第三方面,高温灾害发生频次和强度显著增加,高温灾害致灾危险性增强。第四方面,复合型低温灾害的影响要比单个低温灾害事件影响更明显。(董语飞)jvzq<84yyy4djrscpg}t0lto1o5tj8xjkroo1lsu/f532;912731:8sgyu?9;<;30unuou
2.厦门今年雨季61天下了35天的雨实际上,市民对于暴雨印象深刻,除了跟暴雨发生频次有关之外,暴雨的强度、持续时间及其影响范围,乃至近年来媒体报道速度、自媒体发展等都是重要影响因素。 气象专家表示,如今,全市某地突降大雨,电闪雷鸣,声势虽然惊人,个人拍成短视频发到网上,引起很多关注,但是雨水有时候来去匆匆,累计降水量达不到暴雨量级,容易被市民误jvzq<84yyy4np€3ep1~jcvjp1pkxu87;55>867mvon
3.川贵渝复杂地形下横槽诱发双涡贵州暴雨过程的数值模拟实际上,西南涡暴雨是中国一种非常复杂、富有特色的强降水现象(李跃清等,2016),其造成的暴雨强度、频次和范围仅次于台风及其残留低压(王作述等,1996)。 数值模拟是研究中小尺度天气系统及其影响的重要手段,应用中尺度天气模式研究西南涡及其暴雨已获得了不少有意义的成果。覃丽等(2007)利用MM5模式模拟与诊断得到:2005年jvzquC41jvsm0{mj|0tfv8vzzdedp8mvon532;625;4ivv
4.越来越猛烈的暴雨为何难以被准确预报?  近年来,暴雨这个关键词越来越频繁地出现在热搜上,也切实发生在我们的生活中。   从1961年到2023年,我国平均每年要发生38次暴雨过程。从数据看,极端降水发生频次和强度增加显著,短历时降水破纪录事件趋频。   越下越大的暴雨,造成的影响及其引发的内涝、山洪、泥石流等次生灾害愈加明显,不断向政府jvzq<84yyy4ykwmwcpku0lto1rumk}neu1814=57455g:l=ef:?8hn66:h>97ng2d6<99:g43g90e7mvon
5.今年暴雨咋这么多?“暴雨预报”其实是个世界级难题“全球变暖带来的大气含水量升高、城市热岛效应加剧等,将增加城市极端暴雨的频次和强度。”中国气象局武汉暴雨研究所总工程师万蓉说,虽然变暖会减少热带气旋数量,但会增加其强度和随之带来的降雨。 可以说,极端强降水发生的风险增大,已经从学术研究走向我们将长期面对的现实。 jvzq<84pgyy/jww0ep5tj|1ctzjeuj13178;==867:18A<;:4;:5
6.暴雨肆虐——城市内涝之殇7月21日,北京遭遇61年一遇的特大暴雨,损失惨重。不仅北京,近年来,长沙、武汉、杭州等国内许多城市均因暴雨频发内涝。对暴雨我们已能提前预报、提前准备,为何还会给 城市带来巨大损失?城市内涝是否成了大城市的通病? 大城市为何暴雨多发?灾害性天气频次强度有增大趋势,而大城市也会"放大"气象灾害,近年来,我国大城市jvzq<84yyy4djrscekzzyjygt0usi8wf|v5kk|mw|j{bp}n1ejkoi|mkpgomcx4kpfky0|mvon
7.我国平均每年发生38次暴雨过程,暴雨为何难以被准确预报?近年来,暴雨这个关键词越来越频繁地出现在热搜上,也切实发生在我们的生活中。 从1961年到2023年,我国平均每年要发生38次暴雨过程。从数据看,极端降水发生频次和强度增加显著,短历时降水破纪录事件趋频。 越下越大的暴雨,造成的影响及其引发的内涝、山洪、泥石流等次生灾害愈加明显,不断向政府和公众提出新的应对命题jvzquC41pg}t0‚hyd0ipo872463178751euovnsva7882<:790nuo
8.暴雨、大暴雨!今明两天陕西有一次强降水过程此次降水过程影响范围广、持续时间长,强对流天气特点显著,要强化监测预报预警和会商研判,特别要加强局地暴雨、山洪地质灾害的短临预报预警,紧盯暴雨重点落区,加密预报预警频次,严格落实"叫应叫醒"机制和上下游左右岸信息共享联防机制,确保预警信息传递全覆盖、无遗漏。及时研判、视情启动应急响应,根据预案要求落实"关、jvzquC41mct/eqnpc0ipo8wgcf53;953;7ebnu3jvor