兰州大学 冰川与沙漠研究中心/资源环境学院,甘肃 兰州 730000
Center for Glacier and Desert Research,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China
编委: 周成林
作者简介 About authors
地貌学和沉积学证据表明,山东蒙山地质灾害遗迹分布广泛,通常以砾石堆积堤及河谷堆积阶地的形式保留在现代河床之上。其中,峨峪口砾石堤在蒙山具有典型性和代表性。探明峨峪口砾石堤的成因类型和发生历史,对中国东部(105° E以东)第四纪环境变化、气候地貌过程具有重要的科学研究和科普教育价值。2020年10月和2021年2月,笔者团队两次赴蒙山考察,野外工作主要是砾石组构测量,寻找砾石埋压的断木等有机14C测年材料,以及历史洪水调查、地方文献资料收集等。研究结果表明:(1)峨峪口砾石堤不连续、不对称分布于凹岸(弯道),砾石组构、石线构造、叠置空洞构造和砾石群构造等成因专属性特征,以及砾石表面擦痕的明度,揭示其可能为数百年前所形成的一次性历史泥石流堆积垄岗,且被后期山洪改造过;(2)年代学和遥感资料显示,1991年夏季峨峪口等地曾暴发大型山洪泥石流,这一结果与蒙山泥石流的历史记载具有一致性,从证据链上进一步增强了峨峪口砾石堤泥石流成因的确然性;(3)峨峪口砾石堤可能是低频、短历时快速地貌灾害过程,属于暴雨直接类特大型历史泥石流堆积,其物源主要是峨峪口上游谷地的重力崩积物;(4)峨峪口砾石堤缺少冰缘现象的地貌组合证据,不存在全新世早期冰缘地貌的年代学依据,当地不具备发育全新世早期“石河”和“冻土环境”的气候条件;(5)蒙山地区分布有丰富的碎屑物质和比较陡的沟谷纵剖面,暴雨频繁、水分充足,具有泥石流暴发的形成条件,周边居民点、公路和登山步道应加强山洪泥石流地质灾害防治工作。
关键词:砾石堆积堤;成因类型;定居期;洪水事件;历史泥石流;蒙山;峨峪口
Geomorphology and sedimentology evidences show that the relics of geological disasters in Shandong Mengshan Mountains are prevalent. They are usually distributed along the channels in the form of debris levees and accumulation terraces. Among them, Eyukou boulder levee is one of the most typical and representative levees. To gain a deeper understanding of the Quaternary environmental change process in Eastern China (east of 105° E) and to improve geo-science education better, it is of critical significance to clarify the formation history and genetic type of the Eyukou boulder levee. During the two field trips to Mengshan Mountains in October 2020 and February 2021, a series of data was collected, several sets of gravel fabric measurement data and four AMS14C dating samples of dead tree trunks which was found in the crevices of boulders were reported here. The results show that: (1) The Eyukou Levee distributed on the cut bank at downstream Eyu Valley discontinuously and asymmetrically. Its depositional features including gravel fabric, roundness, stone-trace structure, cavernous structure of stacked boulders and structure of boulders group along with the brightness of scratches on the surface of boulders can definitely attribute Eyukou Levee to a debris flow genesis occurred several hundred years ago and was transformed by the later mountain floods. (2) According to the AMS 14C dating results and remote sensing data, a catastrophic flood was occurred in Eyukou Levee about 30 years ago, which is consistent with a recorded geological disaster happened in Summer 1991. It further enhances the possibility that the Eyukou Levee was formed by catastrophic debris flows. (3) The historical debris flows may be a rapid geomorphological disaster process which is induced by torrential rain. The materials mainly come from the mass movement process, which occurred in the upper of Eyukou. This result is consistent with the fresh scratches on the surface of boulders and supported by the historical records of modern debris flows. (4) The formation of Eyukou Levee is irrelevant to frost-action, additionally the levee is not a block stream. The reported “block stream” in Mengshan Mountains is unreliable due to the lack of reliable evidence of combined geomorphological features, and chronological or sedimentological evidence. The local climate does not have the conditions for the formation of block stream or permafrost environment in the Early Holocene. (5) The Mengshan region is rich in detrital materials with steep longitudinal profiles. During torrential rains, debris flows have a high possibility to occur. Therefore, surrounding residential areas, roads and hiking trails should strengthen the prevention of geological disaster, especially debris flows.
Keywords:boulder levee;genetic type;ecesis time;flood events;historical debris flows;Mengshan Mountains;Eyukou
本文引用格式
图1蒙山地理位置和采样点示意图
Fig.1Sketch map showing the location of Mengshan Mountains and sampling sites
《对比》将古冰缘地貌和中国东部中低山丘陵第四纪冰川发育问题相联系,无疑可对解决中国东部第四纪冰川争论问题提供旁证。但这必须建立在正确认识不同冰缘地貌类型发育所需要的气候环境和时间尺度、冰川和冰缘分布关系的基础上,而且需要准确识别古冰缘现象的地貌学和沉积学标志。
图2冰缘地貌景观
Fig.2Landscape of periglacial landform: block field in Wutai Mountains (a); block field in Shennongjia Forestry District (b); block stream in Binggouhe River, Qilian Mountains (c); detrital (debris) slope in Taibai Mountains (d); talus scree in Nanhutashan Mountains (e); detrital (debris) slope in Jade Mountain (f)
一般认为,全新世早期以来所保存的地貌类型与冰缘现象的一个共同特点是清晰可辨。果如《对比》所云,“峨峪口石河”反映了更新世晚期形成的冰川沉积物的再造和再分布,那必然可以通过它们具有的一系列明显的特征进行鉴别。诸如融冻崩解作用导致的沉积基质内占大部分的棱角状物质组成、伴随透镜状冰体融化及发育的颗粒物上移导致的岩石垂向排列、由饱和流动沉积物导致的地面破碎产生的构造、由融冻作用导致沉积物位移产生的顺坡方向较大颗粒物的优势排列以及冰川退缩以后冰碛物与其内部残留冰川冰混合而成的石冰川等。凡此地貌类型在蒙山地区迄今均无发现、报道,这无疑是“石河”说的缺陷。
图3峨峪口砾石堤地貌景观和沉积构造
Fig.3Geomorphologic landscape and sedimentary structure of Eyukou Levee: stone-trace structure in Eyukou (a); aerial image of Eyukou boulder levee (b); alone scratches and impact mark (including sampling pit) on the surface of boulder (c); irregular scratches on the surface of boulder (d); cavernous structure of stacked boulders (e); structure of boulders group (f)
表1峨峪口砾石堤和太白山文公庙岩屑坡的球度、扁度及轴比率平均值
Table 1 Average sphericity, flattening, and axes ratios of boulders in Eyukou Levee and debris slope in Taibai Mountains
峨峪口砾石堤可见到不同颜色的砾石,它们无疑是多来源混合搬运的结果。至于搬运介质的性质可通过砾组指标具体分析,且组构分析可用于区分冰缘沉积物和未受扰动的冰川沉积物,是鉴别成因类型的有力证据。因为占较大面积的石河呈条带状块石堆积,组成物质为棱角状寒冻风化产物,几无分选性,其组构往往具有平行于当地边坡一致的优势方位。冰缘地带石河的岩块表面常见因生长苔藓与地衣而发黑现象,块石之间无细粒泥砂物质充填。但在蒙山山麓碎屑堆积堤的砾石隙间,偶尔可见由黏土、粉砂和细砾构成,表观无层理发育的棕黄色砂砾透镜体或窝状结构等洪流特有的指相标志。
在沉积学证据方面,具有同生性的枝叶夹层,无疑是难得的成因指相标志或者泥石流发生的植物证据。但由于峨峪口砾石堤堆积年代毕竟已有时日,枝叶夹层早已腐朽烂光,且被后期洪水不断冲释,故难以寻获。2020年10月野外考察期间,发现4处有机材料14C测年样品,编号为LMQZ01、LMQZ02、LMQZ03、LMQZ04,均送美国Beta实验室进行AMS 14C测年,作为峨峪口砾石堤一带挽近洪流发生时代的分析依据。由于这些样品的校正年龄还存在某些不确定性,需要具体分析其年代意义。
图4峨峪口砾石堤14C测年样品所处环境层位和采样点景观
Fig.4Environmental horizon of AMS14C dating sample and Landscape of sampling point in Eyukou Levee: landscape of sampling site in front of Eyukou Levee, LMQZ01 and LMQZ02 (a); environmental horizon of LMQZ01 sample (b); environmental horizon of LMQZ02 sample (c); growth environment of LMQZ03 sampling tree trunk (d); landscape around LMQZ04 sampling location (e); environmental horizon of LMQZ04 sample (f)
表2峨峪口砾石堆积堤洪水事件14C测年结果
Table 2 AMS 14C dating results of flood events in Eyukou Levee
注:*数据经Beta实验室通过BetaCal 3.21软件(HPD method,INTCAL13+NHZ3曲线)校正。
图51991年6月前后遥感影像对比和峨峪口砾石堤下游洪流形成的巨石
Fig.5Comparison of remote sense images of 1990 and 1991, boulder formed by floods in the downstream of Eyukou Levee
由此可见,比较符合逻辑的做法应该是根据客观观察,将峨峪口砾石堆积堤所蕴含的可能成因合乎逻辑地予以排比,并结合地貌学、沉积学、年代学与第四纪地质学的研究成果分别予以检验,分辨哪个选项比较有可能。如果先入为主地确认“峨峪口巨石堆是全新世早期冰缘气候带下的石河”,必然得出“在更新世晚期的末次冰盛期和更早的第四纪冰期蒙山存在着第四纪冰川地貌”的无据结论。本文撰写目的之一是论证峨峪口砾石堤成因与石河无关,进而否定存在“中国东部第四纪大陆冰川”的间接冰缘证据。基于并非某种沉积地貌特征一出现就能立时鉴别出是何种成因类型的困难,暂将峨峪口砾石堤统称为山洪泥石流堆积。至于它到底是一次性水石流或稀性泥石流暴发形成的堆积垄岗,抑或是前后时段经历了水石流-携沙洪水或稀性泥石流-携沙洪水的低频快速高能地貌灾害过程,以及被后期山洪改造的程度,这需要未来由后人去完成了。
根据地貌学、沉积学证据、年代学和遥感资料,以及口耳相传或不完整的历史记载,本文得到如下初步结论:
(2)历史洪水调查、遥感影像和年代资料证实,1991年夏季拦马墙一带曾发生大型山洪泥石流。“1991年大洪水”的发现,从证据链上进一步增强了峨峪口砾石堤为山洪泥石流成因判别的合理性。
(3)峨峪口砾石堤一带不存在古冰缘、山谷冰川和大陆冰川遗迹的地貌组合、沉积构造等成因专属性证据,缺少全新世早期“石河”的年代构成依据,不具备形成全新世早期发育“石河”的气候环境。
(4)地貌学是尺度依存的,成因归类存在时空尺度转换问题。蒙山生物气候条件是基带属于低山丘陵的暖温带气候,套用中高山现代冰川作用区的冰碛或高纬度冰缘区的石海进行类比,地貌成因转化需要明晰冰川、冰缘发育的根本成因是高纬度或山地隆升与地球冰期、冰缘气候耦合的低温环境。过去对不少地貌学问题之所以存在歧义,尤其是在第四纪冰川发育问题上,症结之一就是不在一个时空尺度或范式下讨论问题所致。
(5)尽管冰缘的分布较冰川广泛,各种冰缘现象形成的气候条件比冰川明确,冰缘发育序列的确定相对冰川容易,但仍需采用多项指标进行综合分析才能避免误判。类比是以经验为基础的主观推导,如过分执于经验而且思考模式单向,就免不了牵强附会或机械类比的错误方法论。试图通过确定蒙山等地过去冰缘遗迹的存在,间接论证中国东部第四纪大陆冰川的研究思路,终究还是“不结果实的智慧之花”。
The gradually improving scientific research paradigm on Quaternary Glaciation in China: a review of the 4th Conference on Quaternary Gglaciation and Environmental Variation in China
渐趋完善的第四纪冰川研究范式——记第四届中国第四纪冰川与环境变化研讨会
Issues on criteria and methods for discriminating Quaternary glacial vestiges: also on the origin of boulder-piled levees in Mount Mengshan
第四纪冰川遗迹的判别标准与方法问题——兼论蒙山巨砾堆积堤之成因
What glacier is the “super-maritime glacier”? A discussion with professor Jing Cairui
极海洋型冰川是什么冰川——与景才瑞先生商榷
10Be exposure ages of the boulder in Lanmaqiang (wall for blocking horses), Futa Valley, Mengshan National Geopark
蒙山国家地质公园拦马墙砾石堆积体暴露测年研究
Question the so-called glacial landforms in the middle and low massifs in Shandong Province, Eastern China
山东中低山丘陵古冰川遗迹质疑
Review, progress and prospect of the Quaternary glaciations in eastern China (east to 105° E)
中国东部(105° E以东)第四纪冰川研究回顾、进展及展望
The logical fallacies on identification of the “glacial relics” in Mengshan Mountain: the paper “types, characteristics and dating data of glacial relics in Mount Mengshan Geopark, Shandong Province” as an example
蒙山“冰川遗迹”辨识中的逻辑谬误分析——以“山东蒙山冰川遗迹的类型、特征和年代”一文为例
A profile analysis of block field in Saihanwula National Natural Reserve, Greater Hinggan Mountains and its comparison to a boulder stream in Mount Mengshan Global Geopark, Shandong
大兴安岭南段赛罕乌拉石海剖面分析及其与蒙山拦马墙石河结构对比
Long-term monitoring of sporadic permafrost at the eastern margin of the European Alps (Hochreichart, Seckauer Tauern range, Austria)
Key Concepts in Geomorphology
Schultz J
On the southern boundary of permafrost periglacial environment during the Late Period of Late Pleistocene in North and Northeast China
论我国东北、华北晚更新世时期多年冻土南界与冰缘环境
Type and zone of periglacial landform in China
中国冰缘地貌的类型与分区
The sand wedges of the Last Ice Age in the Hexi Corridor, China: paleoclimatic interpretation
Blockfields (felsenmeer)
Block/rock streams
Physical geomorphology of debris flows
Several geomorphic evidences of debris flow gully
泥石流地貌标志的初步探讨
A preliminary study on the geomorphologic origin and formation time of boulder levee in Baziyu Gully, Mengshan Mountain
蒙山八字峪砾石堆积堤的地貌成因和年代初探
Analysis on development and utilization of tourism resources in Mount Yimeng Geopark
沂蒙山地质公园旅游资源开发利用分析
Development and utilization of geological tourism resources of the Mengshan Mountain, Shandong Province
蒙山地质旅游资源及其开发利用
Summarizing the research of debris flow in Loangnan, Gansu
陇南泥石流研究进展综述
Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California
Tree-ring evidence of ‘Little Ice Age’ glacier advances in southern Tibet
Nineteenth-and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patagónico Norte, Chile
Ages of major Little Ice Age glacier fluctuations on the southeast Tibetan Plateau derived from tree-ring-based moraine dating
Formation and development of glacial debris flow in the Guxiang Gully, Xizang