省遭受重大洪灾,机器学习未来能预报么腾讯云开发者社区

场景描述:在人类历史上,洪水灾害每年都会发生,这是世界上最严重的自然灾害之一。虽然不可避免,但是如果能够做好准确预报,洪水造成的损失则会减少三分之一甚至更多。科学家已经研究出机器学习系统,可准确预测洪水发生的时间地点,目前已经应用在印度。

关键词:洪水灾害 预报 机器学习系统

这个夏天,洪水又开始肆虐。

自 6 月以来,我国从南到北全面进入汛期,部分地区出现严重暴雨洪涝灾情,抗洪救灾的新闻每天见诸报端。

据报道,今年汛期,广东、广西、江西等 22 个省都遭受了不同程度的洪涝灾害。截至今日,洪涝灾情已经导致 675 万人受灾,农作物受灾面积 623 千公顷,直接经济损失约 100 亿元。

广西省桂林市全州县洪水冲毁房屋,房主失神地站在废墟前

而受灾严重的江西省,受灾人数已经超过 200 万,倒塌房屋 531 户 1357 间,严重损坏房屋 508 户 1063 间;江河方面有 4 个站超警戒,8 个水库超汛限。

航拍洪水灾害中的江西吉安,消防人员在积极救援

与此同时,美国中西部、伊朗等地也正遭遇洪灾重创,死亡人数不断上升。

对此,我国多地已经紧急启动应急响应,消防救援大队也都赶赴灾区实施救援。

然而,面对自然灾害,人类的力量总是显得渺小。但庆幸的是,如今我们能够借助科学武器,精准预报、预警,将损失降到最低。而消防救援人员,也将不用再屡屡冒着生命危险冲向第一线。

洪水灾害:历史已久,遍布全球

洪水灾害是世界上最严重的自然灾害之一,在人类历史上每年都会发生。世界各地都有着很多关于洪水灾害的故事,诺亚方舟的故事就是其中之一。

根据《圣经》里的记载,为了逃避上帝因故而造的洪水大灾难,诺亚与家人花费 120 年造成了诺亚方舟。最终大洪水来临时,只有诺亚一家人与方舟中的生命得以存活。

据《圣经》记载,连续 40 天的降雨造成这场大洪水

而洪水淹没大地 150 天后才退去

现实中,我们没有诺亚方舟,洪水灾害每年会造成数万人死亡和数亿人流离失所。洪水灾害往往是由河流湖泊和水库遭受暴雨侵袭,引起洪水泛滥造成的,另外也有海底地震,飓风以及堤坝坍塌等原因。

洪水经常发生在人口稠密、农业垦殖度高、江河湖泊集中,降雨充沛的地方,如北半球暖温带、亚热带。中国、孟加拉国是世界上洪水灾害发生最频繁的地区。

美国达特茅斯洪水观测站记录的全球 1985 年 1 月

至 2017 年 3 月典型洪水事件的分布图

据史料统计,我国平均约两年就发生 1 次洪涝灾害。历史上,洪水曾五进北京城,八次淹了天津市。除沙漠、极端干旱地区和高寒地区外,我国大约三分之二的国土面积都存在着不同程度和不同类型的洪水灾害。

每年夏季,南方多省都会经历暴雨、特大暴雨等强降水天气,「城市看海」的情景已不罕见,城市内涝和洪水应急减灾是居民和管理者共同面对并要努力去解决的难题。

很多城市每逢暴雨必然内涝,形成「城市看海」现象

而许多市民甚至需要划船出行

洪水看似平静,实则来势汹汹。每次洪水发生之前,有太多人因为信息不足,没有做好准备,生命就在瞬间被无情洪水带走。

与地震之类的自然灾害一样,就洪水本质而言,是无法预测的,也是无法避免的。但是,如果我们做好准确预报,就能最大程度减少损失,根据一些研究结果显示,预警系统可以将洪灾造成的死亡和经济损失减少三分之一以上。

机器学习系统:准确预报,提防洪水

来自谷歌、以色列理工学院和巴伊兰大学的研究人员,借助 AI 和强大的计算机算力的帮助,已经研究出了可准确预测河流洪水的机器学习系统。

研究人员将研究论文发表在 Arvix 上

这些预测使用机器学习、降雨记录和洪水模拟的组合。在机器学习模型中,加入了各种元素——从历史事件到河流水位读数,再到特定区域的地形和海拔。根据这些元素,他们生成地图并在每个位置运行多达数十万次模拟。

图片显示为印度海德拉巴河的洪水模拟

(左侧为公开数据,右侧为谷歌系统模拟)

「大规模有效的河流洪水预报受到多种因素的阻碍,最明显的是,当前方法需要依赖人工校准,费力又费时,且特定地点的数据量有限,以及构建的计算难度......」团队写道,「模型则足够准确。机器学习在这种情况下非常有用:学习模型经常在复杂的高维场景中能够超越人类专家。」

正如论文所指出的,构建洪水预测模型的最大挑战之一是参数校准。这是一种旨在将算法预测与某些基线测量相匹配的优化过程。传统方法涉及手工操作,得出的模型虽然表现良好,却不可泛化。

事实上,在洪水预报领域,已经有很多自动化的尝试,但无法达到能足够在操作系统中使用的精度和可靠性水平。因此,实际应用仅限于半自动化过程,包括手工干预或交互。

谷歌在今年 I/O 大会介绍了其人工智能驱动的洪水预报系统

机器学习则非常适合克服上述限制。因为水文模型中,许多核心挑战在于自动校准,而这正是机器学习武器的优势所在。现在,大多数大型机器学习系统都替换和改进了先前基于手动校准的劣质系统。

研究人员通过利用河流水位的实时测量和短期预测克服了其中的一些障碍,他们的模型从中产生了一个洪水图(一张显示水位可能发生在哪里的地图)估算预测洪水的程度。

他们称,根据 2018 年季风季节产生的警报,预测精确到 300 米的分辨率,分别超过 90% 和 75% 的查全率和精确度。

该系统可将洪水预报发送给个人手机端

由于基于物理的模拟的高仿真计算成本和易出错和偏差导致的不准确性,这并不是一个完美的模型。但该团队认为,机器学习技术是改进未来工作预测的关键,通过更大范围的数据,可以学习到更好的模型。

这些成果将最终进入谷歌的谷歌公共警报计划,该计划向谷歌搜索,地图和谷歌新闻等应用程序的用户通报正在发生或即将发生的自然灾害,如飓风,火山爆发,海啸和地震。

20% 的洪水灾害发生在印度,谷歌的预警系统已经

于今年季风之前在印度启用,从恒河上获取警报

目前,美国,澳大利亚,加拿大,哥伦比亚,日本,中国台湾,印度尼西亚,墨西哥,菲律宾,印度,新西兰和巴西的政府机构都参与该项目中。

「我们相信机器学习可以提高多个组件的质量,」研究者说。「为了实现这一目标,我们正在收集,组织和组合来自不同来源的开放数据集,以使机器学习社区更容易解决这个问题。」

洪水不可避免,但其危害可避免

洪水还在各地大肆搞破坏,但科技工作者更在日以继夜地研究对抗方法。自然灾害不可避免,但人类的生命与财产,可以在做好预报的前提下,免受灾难。

希望在下一次洪水到来之时,我们看到的不是消防队员冲在前线的身影,而是 AI 及时为我们做好预报工作,人们提前做好疏散撤离工作,把洪水灾害降低到最小。

THE END
0.击败全球No.1系统、覆盖80+国家,谷歌洪水预测模型再登Nature用长短期记忆网络 (LSTM) 构建的河流预报模型,能够提前 5 天实现对洪水的可靠预测,对于 5 年一遇级别的洪涝灾害预测准确度,与一般性洪涝灾害(1 年一遇)预测准确度相当。 《尚书·尧典》中记载:「汤汤洪水方割,荡荡怀山襄陵,浩浩滔天,下民其咨。」尧舜时代,洪水泛滥让百姓苦不堪言,尧舜决定找人治理洪水,鲧最jvzquC41jwh/djfk0ci/ew4xkg}05?:32
1.洪涝预测与人工智能:保护生活与财产核心算法原理和具体操作步骤以及数学模型公式详细讲解 具体代码实例和详细解释说明 未来发展趋势与挑战 附录常见问题与解答 1.1 洪涝的影响 洪涝对人类的影响非常严重,包括以下方面: 人民生命损失:洪涝很容易导致人民生命的损失,特别是在洪水淹没的地区,人民无法逃脱。 财产损失:洪涝会导致财产的大量损失,包括农田、房屋、基础设施等。 经济损失:洪 jvzquC41dnuh0lxfp0tfv8zpkxksu|p{42761jwvkerf1mjvckrt1:87:2893:
2.基于栅格型新安江模型的中小河流精细化洪水预报栅格型新安江模型 精细化洪水预报 定量化模拟 参数空间分布 水文要素 中小河流jvzquC41yy}/ewpk0eun0ls1Ctzjeuj1ELLEVxycn/NIFa72436229:0jvs
3.河流系统实时洪水预报误差多点联合校正方法研究从20世纪60年代开始,国内外学者对洪水预报实时校正方法进行了广泛的研究。Koren V.I.等[5]将广义差分ARMA模型引入预报模型,在多瑙河布达佩斯至巴加河段采取自我校正预报器算法进行水位预报;Wood E.F.[6]在大流域上使用卡尔曼滤波器技术,建议采用分区子系统的处理方式,采用增补噪声过程的技术补偿预报误差,来处理各个jvzquC41yy}/lrfpuj{/exr1r1913;i254=75;
4.洪水是怎样预报的,如何保证精度看到这里,各位读者是不是以为洪水预报就是制作一套预报模型,跑出一个结果,预报就完成了,剩下的就是结果上报,领导决策,各方抢险了?实际上的洪水预报流程可是远比这复杂得多。仅仅从洪水预报模型的角度而言,一个大流域就绝对不会只使用一种预报模型。没有人可以保证如果只采用一套预报模型,这套模型在某些关键的预报jvzq<84yyy4489iqe0ipo8hqpvkov8641273385917>5:=72;a?:5=:;;4
5.基于HECHMS和双超模型的小流域洪水预报研究与应用HEC-HMS模型 双超模型 洪水预报 参数敏感性分析 小流域jvzquC41efse0lsmk0ipo7hp1Cxuklqg1EJNF662338.396:;8614:3jvo
6.新疆洪水预报预警中融雪径流模型应用进展针对全球变化背景下极端升温、暴雪和暖湿化现象以及中国新疆地区融雪洪水灾害风险增大问题,概述了新疆不同类型洪水灾害特征,重点阐述了近年发生频率增加、致灾性强、灾害风险增大,但在新疆未引起重视的融雪洪水的研究进展,对比分析了不同类型融雪径流模型特点和研究现状。综合目前融雪径流模型已有进展和面临的挑战,提出新疆jvzquC41yy}/inttgu4dqv3ep1mismq1EP52276433>0l7nuup42295/82<10;5450765
7.珠江流域洪水预报模型精准及时预报预警央视网2025-05-31 06:38:08174354次观看 珠江流域洪水预报模型精准及时预报预警。 责任编辑:央视网 央视新闻 我用心你放心 喜欢热门推荐 视频丨特朗普说俄罗斯是“纸老虎” 俄回应:我们是真正的熊 9月25日 07:39 严查严打欺诈骗保 国家医保局启动医保基金管理专项整治 9月25日 14:18 联合国气候变化峰会举行 国际jvzquC41eqtugwy/uvgukl3eev|og€x0eezw0lto1utpy6gqqm5wkmjq0jznnHnvgoejfF;363<42?8:23?46;;2(vxbetdkf?8e7
8.LSTM网络实现洪水预报原理附完整Matlab代码利用神经网络来进行洪水预报时,由于不涉及到物理机制,因此特征因子的选择至关重要。最常采用的因子包括前期降雨量和前期流量,例如在预报t+T(T为预见期)时刻A水文站的流量时,t-a、t-a+1、t-1、t(a+1为前期时段长度)时刻的降雨量即为前期降雨量,t-a、t-a+1、t-1、t时刻的流量即为前期流量。jvzquC41cxujf7txgtljv7hp1rutv89644i86
9.河北雨洪模型.pdf洪水预报工作极为 重要。 1 河北省属于半干旱半湿润地区,自然条件十分复杂,需要建立适合本 省情况的洪水预报模型。 多年来,河北省洪水预报始终是预报人员的技术难题。从国内外引进 的水文模型,由于降雨特性及流域下垫面条件差异,均不能很好地解决河 北省洪水预报问题,严重制约着水利工程效益的发挥。 在借鉴国内外许多水文模型的基础上,jvzquC41oc~/dxtm33>/exr1jvsm1;53;1664A4922<24:6342632<50ujzn
10.水资源环境水环境评价是对多项水质监测数据的综合评价,从而确定各类或各区域水体的合理使用。建立基于GIS技术和平台的水环境评价模型,将为全国或流域水环境的宏观控制与执法管理提供更科学的依据和有效的手段。 4.分布式流域水文模型 流域产汇流模型是水资源-环境-灾害管理中提高预报预警能力的重要保证。分布式流域洪水预报模型是jvzquC41yy}/q|lgq0io1ytuv18ggm<
11.SCS模型在流域尺度水文模拟中的应用及其结果分析【摘要】:在分析国内外众多研究成果的基础上,选择国外已广泛应用、国内也有一定研究基础的分布式小流域洪水预报模型——SCS模型对湖北省漳河灌区内的新埠河-桥河流域洪水进行模拟研究,并对模拟结果及模型适用性进行讨论。利用绘图软件Autocad2004对流域进行一定 jvzquC41erle0lsmk0ipo7hp1Cxuklqg1EVGF]TVCN3[I\Q422?1;95326>/j}r
12.共242项!2022年度水利部重大科技项目清单公布资讯中心(三)水利专业模型研究 其他有关研究 1 国际河流有关研究(名称另行下达) 水利部国际经济技术合作交流中心 金海 申报类项目 (一)水旱灾害防御领域 (二)水资源优化配置领域 (三)水资源集约节约利用领域 (四)河湖治理与生态环境复苏领域 (五)国家水网等水利工程建设与运行领域jvzquC41yy}/kwxvtwsfp}3eqo4dp8sgyu532;8234>08=>2744tj}rn
13.水文模型在山洪模拟中的比较应用国内沿用传统大江大河建模思路从淹没角度建立了以经验归纳统计法和水文水力学方法为手段的洪水预报模型,初步提出了“一维简化水动力学模型”、“分布式水文模型”和“多维完整水动力学模型”等模型。如王璐等将5种常用的水文模型应用于湿润、半干旱半湿润地区的14个典型山区小流域,在山区开展模型适用性研究,得出在湿润地jvzquC41yy}/jjsurwh/q{l1lq{spjq1RcvftRshqtsbvrtp0cyqzHucrgxJFF7;26>
14.洪水预报研究与展望叶金印等[17]等以淮河蒋家河以上流域为研究对象,采用集合降水预报产品(预见期为0~240 h)驱动洪水预报模型进行模拟预报,ECMWF集合降水预报能够明显提高洪水预报精度,模拟结果能够刻画洪水流量过程线的不确定范围,并能提前24 h及时预警。汤欣钢等[18]以漳河流域为例检验分析中央气象台天气降水预报在该区域的准确性及经 jvzq<84kttohc}j0yj{/gmz0ep5DP8620384;?4|puj/4;5467
15.“北京模型”智慧防洪“过去全市五大流域只有18个主要洪水预警断面,今年通过优化洪水预报模型结构,基本能实现流域面积50平方公里以上河流洪水预报全覆盖。”高强说,比如永定河流域,以前只能聚焦几个关键的风险点,现在能够对流域内十余条较大的河流进行洪水风险研判,并结合地理空间数据,更加精准地反映流域洪水过境的过程。 jvzq<84yyy4djrscyczft7hqo0io1wjyuekovnw1fh5cl87244671}7244673>d9:6:697mvon
16.数字孪生流域智慧防洪体系建设|四信水动力模型助力四预数字化二维水动力模型是一种利用数学模型和计算机仿真技术的洪水预报方法。该模型可模拟水域数据,如河道、湖泊的水位、流量,并预测洪水发生时间、规模、影响范围等信息,为应急管理部门和居民提供预警和决策依据。 随着计算机技术和数值模拟方法的进步,该模型已广泛应用于洪水预报、水利工程设计、海岸防护等领域,成为最常用的数学jvzquC41yy}/hxzt/hgjvq3eqo4dp8npfwyut‚Sgyu55;;3jvor
17.星图亿水|GEOVISiWater助力洪水预报,守护江河安澜建成洪水预报集总+分布式的洪水预报模型,可适用于各种下垫面条件的洪水预报。实现预报模型与气象数据深度耦合,基于气象网格或短临气象预报成果,贯通”降雨-产流-汇流-演进”洪水预报链条和全部预报指标。预报模型库具备多尺度、多过程、高时间分辨率、灵活空间分辨率模型集成管理能力。 jvzquC41v071lzpc0eun0ls1rkj`5<:586?567xjvor
18.基于正则化GRU模型的洪水预测摘要:针对传统神经网络模型在洪水预测过程中存在准确性低、过拟合等问题, 本文以赣江流域外洲水文站每月平均水位为研究对象, 提出基于正则化GRU神经网络的洪水预测模型来提高洪水预报精度. 选用relu函数作为整个神经网络的输出层激活函数, 将弹性网正则化引入到GRU模型中, 对网络中输入权重w实施正则化处理, 以提升GRU模jvzquC41e/y.c7tti0io1qyon1813B4718>957mvon