中国西北干旱区生态区划

摘要: 从国内外生态区划、生态土地分类和生态 生产范式的研究和发展入手, 从生态利用的角度出发, 在西北干旱区生态区域分异规律的基础上, 结合当地的社会经济发展特点, 全面完成了西北干旱区的生态区划方案。本着既尊重自然规律又符合可持续发展的生态 生产范式的原则, 在西北干旱区的生态区划过程中, 主要考虑以下几个方面:气候与巨地形系统、地貌与基质、植被与土壤以及土地利用与产业发展方向;区划方法是以经验判别和地理信息系统 (GIS) 相结合进行的, 过去发表的多种尺度的图件和区划方案均作为分区过程的辅助材料和新区划方案的校正材料;根据气候、巨地形系统、地貌、基质、植被、土壤以及土地利用和产业 发展方向等特征, 该生态区划的 3级分区指标如下:一级分区, 主要依据气候和巨地形系统, 并充分考虑该高级分区在生态环境建设和产业结构调整中的作用;二级分区, 主要根据次级地形和地貌系统以及大尺度植被类型;三级分区, 主要依据基质和土壤的差异所造成的局域植被类型的差异, 以及其生态 生产范式和将来的发展方向。根据以上区划的原则和指标体系, 西北干旱区的生态区划采用 3级区划制:生态域 (Ecodomain) 、生态区 (Ecoregion) 、生态小区 (Ecodistrict), 最后将西北干旱区划分为 3个生态域、2 3个生态区和 80个生态小区, 并利用GIS绘制了 1∶10 0万比例尺的西北干旱区生态区划图。西北干旱区生态区划的目的不仅在于发展独特的干旱区生态区划/生态分类的方法和理论体系, 建立生态区划的方案和生态 生产范式, 更重要的是要运用这些方法、规律和范式来指导当地的生态环境建设和产业结构调整, 促进当地的土地资源合理配置, 实现西北干旱区的可持续发展。

从国内外生态区划、生态土地分类和生态 生产范式的研究和发展入手, 从生态利用的角度出发, 在西北干旱区生态区域分异规律的基础上, 结合当地的社会经济发展特点, 全面完成了西北干旱区的生态区划方案。本着既尊重自然规律又符合可持续发展的生态 生产范式的原则, 在西北干旱区的生态区划过程中, 主要考虑以下几个方面:气候与巨地形系统、地貌与基质、植被与土壤以及土地利用与产业发展方向;区划方法是以经验判别和地理信息系统 (GIS) 相结合进行的, 过去发表的多种尺度的图件和区划方案均作为分区过程的辅助材料和新区划方案的校正材料;根据气候、巨地形系统、地貌、基质、植被、土壤以及土地利用和产业 发展方向等特征, 该生态区划的 3级分区指标如下:一级分区, 主要依据气候和巨地形系统, 并充分考虑该高级分区在生态环境建设和产业结构调整中的作用;二级分区, 主要根据次级地形和地貌系统以及大尺度植被类型;三级分区, 主要依据基质和土壤的差异所造成的局域植被类型的差异, 以及其生态 生产范式和将来的发展方向。根据以上区划的原则和指标体系, 西北干旱区的生态区划采用 3级区划制:生态域 (Ecodomain) 、生态区 (Ecoregion) 、生态小区 (Ecodistrict), 最后将西北干旱区划分为 3个生态域、2 3个生态区和 80个生态小区, 并利用GIS绘制了 1∶10 0万比例尺的西北干旱区生态区划图。西北干旱区生态区划的目的不仅在于发展独特的干旱区生态区划/生态分类的方法和理论体系, 建立生态区划的方案和生态 生产范式, 更重要的是要运用这些方法、规律和范式来指导当地的生态环境建设和产业结构调整, 促进当地的土地资源合理配置, 实现西北干旱区的可持续发展。

Abstract: An ecological regionalization system was developed for the arid lands of northwestern China based on ecological and environmental factors, including climate, large-scale terrain features, landform, geology, vegetation, and soils, in combination with characteristics of social and economic development. The region was stratified into discrete geographical units of uniformity at three levels: Level I, the ecodomain, was based on climate and large-scale terrain features with consideration of the role of higher levels of regionalization and industrial development; Level II, the ecoregion, was based primarily on secondary landform, topography and large-scale vegetation types; and, Level III, the ecodistrict, was based on differences in local vegetation due to differences in geology and soils, as well as its eco-productive paradigm and potential future development. Based on this three-class system, we defined three ecodomains, 23 ecoregions and 80 ecodistricts. An ecoregional map of northwestern arid lands of China was drawn at 1∶1 million scale using GIS. The goals of the ecological regionalization classification were not only to develop a unique system of arid land ecological classification, but also to supervise local development and land use management to promote sustainable development of arid lands in northwestern China.

An ecological regionalization system was developed for the arid lands of northwestern China based on ecological and environmental factors, including climate, large-scale terrain features, landform, geology, vegetation, and soils, in combination with characteristics of social and economic development. The region was stratified into discrete geographical units of uniformity at three levels: Level I, the ecodomain, was based on climate and large-scale terrain features with consideration of the role of higher levels of regionalization and industrial development; Level II, the ecoregion, was based primarily on secondary landform, topography and large-scale vegetation types; and, Level III, the ecodistrict, was based on differences in local vegetation due to differences in geology and soils, as well as its eco-productive paradigm and potential future development. Based on this three-class system, we defined three ecodomains, 23 ecoregions and 80 ecodistricts. An ecoregional map of northwestern arid lands of China was drawn at 1∶1 million scale using GIS. The goals of the ecological regionalization classification were not only to develop a unique system of arid land ecological classification, but also to supervise local development and land use management to promote sustainable development of arid lands in northwestern China.

图1 中国西北干旱区生态区划概图 下载原图 I 温带荒漠盆地自然保育生态域I-1 准噶尔盆地温带荒漠生态区I-1-a 准噶尔北部砾质荒漠生态小区I-1-b 艾比湖盐沼和壤质荒漠生态小区I-1-c古尔班通古特沙漠生态小区I-1-d 准噶尔南缘壤质荒漠生态小区I-1-e 准噶尔东部砾质荒漠生态小区I-2伊犁谷地温带沙漠生态区I-2-a 伊犁谷地沙漠生态小区I-3河西走廊/阿拉善高原温带荒漠生态区I-3-a阿拉善西部戈壁荒漠生态小区I-3-b阿拉善北部砾质荒漠生态小区I-3-c 阿拉善沙漠生态小区I-3-d 河西壤质荒漠生态小区I-3-e 黑河下游荒漠河岸林生态小区I-4 吐哈盆地暖温带荒漠生态区I-4-a 吐哈盆地砾质荒漠生态小区I-5 塔里木盆地暖温带荒漠生态区I-5-a塔里木北部壤质荒漠生态小区I-5-b塔克拉玛干沙漠和田河西部生态小区I-5-c塔克拉玛干沙漠中部生态小区 I-5-d塔克拉玛干沙漠塔里木河东部生态小区I-5-e塔里木西南部壤质荒漠生态小区I-5-f 塔里木东南部壤质荒漠生态小区I-5-g 塔里木东部壤质荒漠生态小区I-5-h罗布戈壁雅丹与盐漠生态小区I-5-i库木塔格沙漠生态小区I-5-j塔里木河河岸林生态小区I-5-k 塔里木盆地和田河河岸林生态小区I-5-l 塔里木盆地克里雅河河岸林生态小区I-5-m塔里木盆地车尔臣河河岸林生态小区I-6 柴达木盆地冷温带荒漠生态区I-6-a 柴达木北部砾质荒漠生态小区I-6-b 柴达木雅丹与沙漠生态小区I-6-c 柴达木南缘盐沼生态小区II 温带洪积扇缘农林畜牧绿洲生态域II-1 阿尔泰山南麓山前洪积扇生态区II-1-a 阿尔泰山南麓河谷与绿洲复合生态小区II-2 塔城盆地洪积扇生态区II-2-a 塔城盆地边缘潜水涵养生态小区II-2-b 塔城盆地荒漠与绿洲复合生态小区II-3 天山北麓山前洪积扇生态区II-3-a 天山北麓砾石戈壁潜水涵养生态小区II-3-b 天山北麓山前绿洲与扇缘潜水溢出带复合生态小区II-4 伊犁谷地洪积扇生态区II-4-a 伊犁谷地砾石戈壁潜水涵养生态小区II-4-b 伊犁谷地绿洲与扇缘潜水溢出带复合生态小区II-4-c 伊犁谷地河谷绿洲生态小区II-5 吐哈 (东疆) 山前洪积扇生态区II-5-a 吐哈砾石戈壁潜水涵养生态小区II-5-b 吐鲁番山前绿洲生态小区II-5-c 吐鲁番扇缘潜水溢出带生态小区II-5-d 哈密山前绿洲生态小区II-5-e 哈密扇缘潜水溢出带生态小区II-6 天山南麓山前洪积扇生态区II-6-a 天山南麓砾石戈壁潜水涵养生态小区II-6-b 北山南麓山前砾石戈壁潜水涵养生态小区II-6-c 天山南麓山前绿洲与扇缘潜水溢出带复合生态小区II-7 河西 (祁连山北麓) 山前洪积扇生态区II-7-a 河西山前砾石戈壁潜水涵养与绿洲复合生态小区II-7-b 河西山前绿洲与扇缘潜水溢出带复合生态小区II-7-c 疏勒河河谷盐沼荒漠生态小区II-8 昆仑山前洪积扇生态区II-8-a 昆仑山北麓砾石戈壁潜水涵养生态小区II-8-b 昆仑山北麓山前绿洲生态小区II-8-c 昆仑山北麓扇缘潜水溢出带生态小区II-9 柴达木 (东昆仑山北麓) 山前洪积扇生态区II-9-a 柴达木砾石戈壁潜水涵养生态小区II-9-b 柴达木山前绿洲与扇缘潜水溢出带复合生态小区II-10 贺兰山西麓水源涵养生态区II-10-a 贺兰山西麓水源涵养生态小区III 温带山地森林-草原/荒漠休养恢复生态域III-1 阿尔泰山地森林-草原生态区III-1-a 阿尔泰高山冻原生态小区III-1-b 阿尔泰高山草甸-草原生态小区III-1-c 阿尔泰中山森林-草原生态小区III-1-d 阿尔泰低山荒漠草原生态小区III-2 准噶尔西部山地森林-草原生态区III-2-a 准噶尔西部高山草甸生态小区III-2-b 准噶尔西部中山森林-草原生态小区III-2-c 准噶尔西部低山荒漠草原生态小区III-3 天山北坡山地森林-草原生态区III-3-a 北天山北坡高山草甸生态小区III-3-b 南天山北坡高山草甸生态小区III-3-c 天山北坡中山森林-草原生态小区III-3-d 天山北坡低山荒漠生态小区III-3-e 特克斯河谷草原生态小区III-4 天山南坡山地草原生态区III-4-a 北天山南坡高山草甸生态小区III-4-b 南天山南坡高山草甸生态小区III-4-c 天山南坡中山灌丛-草原复合生态小区III-4-d 尤尔都斯盆地草原生态小区III-4-e 天山南坡低山荒漠生态小区III-5 昆仑山山地荒漠生态区III-5-a 昆仑山高山湖盆高寒荒漠、草原与草甸生态小区III-5-b 昆仑山北坡中山草原生态小区III-5-c 昆仑山北坡中山森林-草原生态小区III-5-d 昆仑山北坡低山荒漠生态小区III-5-e 阿尔金山北坡低山荒漠生态小区III-6 祁连山北坡山地森林-草原生态区III-6-a 祁连山北坡高山草甸-草原生态小区III-6-b 祁连山北坡中山森林-草原生态小区III-6-c 祁连山北坡低山荒漠生态小区III-7 贺兰山西坡山地森林-草原生态区III-7-a 贺兰山西坡中山森林-草原生态小区

Fig.1 Sketch map of the ecological regionalization of northwestern arid land in China

THE END
0.在中国,没有哪一寸土地不能创造出奇迹……西北干旱区 坎儿井,古老的引水留水智慧 为什么在一片片沙漠中会奇迹般长出绿油油的瓜果蔬菜和庄稼?这一切都与坎儿井的滋润有关。 吐鲁番盆地是中国极端干旱地区之一,如何引来水、留住水,是对吐鲁番居民极大的考验。天山降水是吐鲁番水资源唯一的补给来源,居民饮用的坎儿井水,主要来自天山雪水。 jvzquC41yy}30w~pw0kew7hp1f}co8y|jd5jpot132751;6980nuo
1.我国西北内陆干旱区的基本概况西北内陆干旱区包括新疆全部、内蒙古中西部、宁夏和甘肃的部分地区。因为深处内陆,除东部内蒙古的草原地区受到东亚季风的影响,西部山地受西风带作用明显外,其他地区基本不受季风影响。区内除额尔齐斯河为外流河流外,其余都是内陆河流(伊犁河注入哈萨克斯坦的巴尔喀什湖)。区内湖泊广布,大多为内陆盐湖。本区根据地形、jvzquC41yy}/q|lgq0io1ytuv1j58@6
2.干旱区生态安全与可持续发展全国重点实验室中国科学院新疆生态与地理研究所(以下简称新疆生地所)成立于1998年7月7日,由中国科学院新疆生物土壤沙漠研究所(1961年成立)和中国科学院新疆地理研究所(1965年成立)合并而成。研究所面向国际干旱区生态、环境、资源领域科技前沿,面向国家“丝绸之路经济带”建设重大jvzq<84yyy4fir3ce0io1‚orv1nn{uuvip{f|~ua3<45:81
3.西北农林科技大学科学技术发展研究院近日,农学院旱作节水团队在半干旱区垄沟集雨种植方式下春玉米根系吸水机制研究方面取得进展,研究成果以“Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region”为题在《Agricultural Water Management》jvzquC41m{/p€xwch4ff~3ep1qklƒ4zfmpk|8>:g9i42o:3d6:e;?=;44hb7o;he9:d7m3jvo
4.中国西北地区干旱性成因孙国武等研究发现青藏高原的大气低频振荡在西北地区干旱气候变化中有重要作用。南京气象学院罗哲贤教授在兰州干旱气象研究所从事过多年的研究工作,他研究发现,我国半干旱地区干旱的发生,取决于中高纬阻塞流型的形成和副热带高压流型的维持,在阻塞流型形成和维持的过程中,纬向非对称热力强迫与耗散,非线性平流和线性频散三者jvzquC41yy}/q|lgq0io1ytuv1jg4:8