小粒径气溶胶的浓度受凝聚作用所限制,而大粒子的浓度则受沉降作用所限制。微粒在大气中沉降的过程中, 受的阻力和重力的作用达到平衡时, 各种粒子的沉降速度不同。
气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。
气溶胶粒子具有分布不均匀、变化尺度小、复杂性的特点,多集中于大气的底层,对云的凝结核、雨滴、冰晶形成,进而对降水的形成起重要作用。气溶胶甚至可以改变云的存在时间,能够在云的表面产生化学反应,决定降雨量的多少,影响大气成分。
气溶胶中的粒子具有很多特有的动力性质,光学性质,电学性质.比如布朗运动,光的折射,象彩虹,月晕之类都是因为光线穿过大气层而引起的折射现象.而大气中含有很多的粒子,这些粒子就行成了气溶胶.
气溶胶的容器内含有两种物质--有待喷射的液态物和保持压力的压缩气体。当揿下按钮时,阀门张开,压缩气体将喷嘴里的一些液态物压出。
1926年,挪威科学家埃里克.罗西姆首先想出了这个点子。但其他一些科学家也同样有此想法。美国人朱利叶斯.S.可汗想出了一次性使用的金属雾筒。同样来自美国的莱尔.达维.古德休则进一步研制了这一发明,使它成为可以上市的商品。1941年,第一批气溶胶开始销售。
但也发现了气溶胶存在的一个问题。用于压缩气体的化学药品通常是含氯氟烃(即CFCs),已证明它是对地球大气层上的臭氧层造成损害的一类物质。
空气中悬浮的固态或液态颗粒的总称,典型大小为0.01~10微米,能在空气中滞留至少几个小时。气溶胶有自然或人类两种来源。气溶胶可以从两方面影响气候:通过散射辐射和吸收辐射产生直接影响,以及作为云凝结核或改变云的光学性质和生存时间而产生间接影响。
n(r)=Cr
通过大气遥感可探测气溶胶粒子的平均谱分布。
气溶胶的化学组成十分复杂,它含有各种微量金属、无机氧化物、硫酸盐、硝酸盐和含氧有机化合物等。由于来源不同,形成过程也不同,故其成分不一,特别是城市大气受污染源的影响,气溶胶的成分变动较大。但是非城市大气气溶胶的成分比较稳定,大体上与地区的土壤成分有关。
气溶胶来源于土壤的各种元素(如铕、钠、钾、钡、铷、镧、铈、硅、钐、钛、钍、铝等),其含量在地区之间差别不大;而来源于工业区的各种元素(如氯、钨、银、锰、镉、锌、锑、镍、砷、铬等),就有较大的地区差别。
气溶胶是大气中极其重要的组成部分,它不仅直接影响人类的健康,还能增加大气的化学反应,降低能见度,增加降水、成云和成雾的可能性,影响大气辐射收支,导致环境温度和植物生长速率的改变以及沾污材料。对气溶胶的研究,无论对于大气化学、云和降水物理学、大气光学、大气电学、大气辐射学、气候学、环境医学或者生态学等学科来说,都有重要意义。但气溶胶化学组成的研究仅是开始,还有待于今后发展。
气溶胶在工业、农业、国防和其他方面都已得到广泛的应用,如加快燃烧速率和充分利用燃料。喷雾干燥可提高产品质量,已广泛用于医药工业与洗衣粉的生产。农业上,农药的喷洒可提高药效、降低药品的消耗;利用气溶胶进行人工降雨,可大大改善旱情。国防上,用来制造信号弹和遮蔽烟幕。
工业城市上空的烟雾和工厂、矿井中的烟尘对人体健康危害极大(如硅肺),还有破坏大自然的酸雨以及易引起爆炸的粉尘,都和气溶胶有关。
研究称气溶胶对全球变暖的“冷却效应”很微弱。一位挪威科学家表示,他已经估测出了气溶胶到底能对气候产生多大影响。
散布在大气中的气溶胶微粒对太阳光具有反射效应,进而可以“遮蔽”全球变暖的影响。而这位挪威科学家的研究项目的目的是要综合运用反应这种“直接气溶胶效应”的各类模型和观测结果,以准确评估这一冷却效应的作用。
据英国广播公司消息,挪威国际气候和环境研究中心的气候科学家冈纳.迈尔(Gunnar Myhre)在《科学》杂志上报告说,他的研究发现冷却效应并不像此前研究预测的那么强烈。迈尔说,这能清楚地表明到目前为止人类到底给气候带来了多大的改变。他研究的污染微粒包括硫酸盐等工业气溶胶、燃烧农业废弃物所排放的硝酸盐以及柴油发动机和其它燃烧形式所产生的黑碳(煤烟)。“气溶胶排放的全球模型显示,温室气体造成的全球变暖有大约10%被它们(气溶胶)的冷却效应消除了。” 参与该项研究的英国气象局气溶胶研究员吉姆.海伍德(Jim Haywood)解释说,“但利用卫星手段探测到的大气气溶胶的含量却表明,冷却效应消除了大约20%(的全球变暖)。”
迈尔协调了两种方法,最终得到了一个更为精确的评估数据——冷却效应接近10%。这一结果比联合国政府间气候变化专家委员会(IPCC)此前所预测的要弱。“硫酸盐和有机碳反射太阳辐射,而黑碳在很大程度上却会吸收太阳辐射。”他解释说。“模型考虑到了黑碳(排放)增幅多于其它两种气溶胶的情况。但基于观测的方法却难以将其考虑在内,因为我们只有针对当前状况的观测数据,而且不是在人类活动开始之前的。这将对以后的气候预测产生影响。” 海伍德说。
不过,气溶胶对气候的影响远不止于此。气溶胶微粒会改变云层,增加大气中液滴浓度,从而增加云量。迈尔说,这种“间接气溶胶效应”引起的遮蔽或者冷却作用仍然存在“很多不确定”。海伍德对此表示同意。“气溶胶对云量的影响让我们很伤脑筋,”他说,“这给我们的数据采集留下了一个大空白。”他和英国气象局的同事已经开始研究是否可以利用气溶胶来有意地遏制全球变暖。
在最近的一项研究中,他通过气候模型来预测,利用海盐颗粒增加云层的反照率这种故意使云层变亮的手段将对全球气温产生什么样的影响。研究小组发现,全球变暖将被延缓多达25年,但他们同时发现,这种方法也会带来很多不利影响。研究人员说,其中最严重的后果就是,南美地区的降雨量将大幅减少,这很可能会加速亚马逊雨林的枯萎,给这一世界主要碳汇造成损失。“采用这种方法,你必须非常谨慎地选择云层。”海伍德说。迈尔指出,同温室气体相比,气溶胶对气候的影响最终将变得无足轻重。
“气溶胶的寿命很短,而温室气体的寿命却很长——二氧化碳可以存在100多年。”他说,“在将来,温室气体才是全球变暖真正的大问题。它们的影响将越来越重要。”