改进v!

恶劣天气条件下从低质量图像中定位目标还是极具挑战性的任务。 现有的方法要么难以平衡图像增强和目标检测任务,要么往往忽略有利于检测的潜在信息。 本文提出了一种新的图像自适应YOLO (IA-YOLO)框架,可以对每张图像进行自适应增强,以提高检测性能。 实验结果证明了IAYOLO方法在雾天和弱光情况下的有效性。

虽然基于深度学习的目标检测方法在传统数据集上取得了良好的效果,但在恶劣天气条件下从低质量图像中定位目标仍然具有挑战性。现有的方法要么难以平衡图像增强和目标检测任务,要么往往忽略有利于检测的潜在信息。

为了缓解这一问题,本文提出了一种新的图像自适应YOLO (IA-YOLO)框架,可以对每张图像进行自适应增强,以提高检测性能。针对YOLO探测器的恶劣天气条件,提出了一种可微分的图像处理(DIP)模块,并利用小型卷积神经网络(CNN-PP)对其参数进行预测。

IA-YOLO以端到端的方式学习CNN-PP和YOLOv3,这确保CNN-PP可以学习适当的DIP,以弱监督的方式增强图像进行检测。

本文提出的IA-YOLO方法可以在正常和恶劣天气条件下自适应处理图像。实验结果证明了IAYOLO方法在雾天和弱光情况下的有效性。

一、所提方法

在恶劣天气条件下拍摄的图像,由于特定天气信息的干扰,能见度较差,导致目标检测困难。为了解决这一挑战,本文提出了一种图像自适应检测框架,通过去除特定天气信息并揭示更多潜在信息。如图2所示,整个管道由一个基于cnn的参数预测器(CNNPP)、一个可微分图像处理模块(DIP)和一个检测网络组成。首先调整输入图像的大小为256x256,并将其输入到CNN-PP,以预测DIP的参数。然后,将经过DIP模块滤波后的图像作为YOLOv3检测器的输入。作者提出了一种端到端的混合数据训练方案,该方案具有检测损失,使CNN-PP能够学习适当的DIP,以弱监督方式增强图像的目标检测。

DIP Module

图像滤波器的设计应遵循可微性、分辨率独立的原则。对于基于梯度的CNN-PP优化,滤波器应该是可微的,以允许通过反向传播训练网络。由于CNN在处理高分辨率图像(如4000×3000)时会消耗大量的计算资源,所以在本文中,从下采样的大小为256×256的低分辨率图像中学习滤波器参数,然后将相同的滤波器应用到原始分辨率的图像中。因此,这些过滤器需要独立于图像分辨率。

我们提出的DIP模块由六个可微滤波器组成,具有可调超参数,包括Defog、White Balance(WB)、Gamma、Contrast、Tone和Sharpen。标准的颜色和色调操作符,如WB、Gamma、Contrast和Tone,可以表示为像素级滤波器。因此,设计的滤波器可以分为雾化、像素化和锐化。在这些滤波器中,除雾滤波器是专门为大雾场景设计的。具体情况如下。

1、像素级滤波器

像素级滤波器映射一个输入像素值 转换为输出像素值 ,其中 分别表示红、绿、蓝三个颜色通道的值。表1列出了四个像素级过滤器的映射函数,其中第二列列出了在本文的方法中要优化的参数。WB和Gamma是简单的乘法和功率变换。显然,它们的映射函数对于输入图像和参数都是可微的。

设计了可微对比度滤波器,输入参数设置原始图像和完全增强图像之间的线性插值。所示表1,映射函数中 的定义如下:

这里将tone 滤波器设计为一个单调的分段线性函数。用 参数学习tone 滤波器,用 表示,tone 曲线的点记为 ,其中 。此外,映射函数用可微参数表示,这使得函数对于输入图像和参数都是可微的,如下所示

2、锐化滤波器

图像锐化可以突出图像的细节。就像未锐化掩模技术(Polesel, Ramponi, and Mathews 2000),锐化过程可以描述如下:

其中 为输入图像, 为高斯滤波器, 为正缩放因子。这个锐化操作对于 和 都是可微的。注意,锐化程度可以通过优化 调优目标检测性能。

3、除雾滤波器

基于暗通道先验方法设计了一个具有可学习参数的除雾滤波器。基于大气散射模型,朦胧图像的形成可以表述为:

其中 为雾天图像, 为场景亮度。A为全球大气光, 为介质透射图,定义为:

其中 为大气的散射系数, 为场景深度。

为了恢复干净图像 ,关键是获取大气光A和透射图 。为此,首先计算暗通道图,并选择最亮的1000个像素。然后,对雾霾图像 的1000个像素平均估计A。

根据上式,可以推导出 的近似解如下:

进一步介绍一个参数 w 除雾程度控制方法如下:

由于上面的操作是可微的,可以优化 通过反向传播使除雾滤波器更有利于雾天图像的检测。

CNN-PP Module

在相机图像信号处理(ISP)管道中,通常使用一些可调滤波器进行图像增强,其超参数由经验丰富的工程师通过视觉检查手动调整。

通常,这样的调优过程是非常笨拙和昂贵的,以找到合适的参数,广泛的场景。为了解决这一局限性,建议使用一个较小的CNN作为参数预测器来估计超参数,这是非常有效的。

以雾天场景为例,CNN-PP的目的是通过了解图像的全局内容,如亮度、颜色和色调以及雾的程度来预测DIP的参数。因此,下采样图像足以估计这些信息,可以大大节省计算成本。对于任意分辨率的输入图像,我们简单地使用双线性插值将其采样到256×256分辨率。如图2所示,CNN-PP网络由5个卷积块和2个全连接层组成。

每个卷积块包括一个带有stride=2的3 × 3卷积层和一个LeakyRelu。最后的全连接层输出DIP模块的超参数。这5个卷积层的输出通道分别为16、32、32、32和32。当参数总数为15时,CNN-PP模型只包含165K个参数。

Detection Network Module

在本文中,选择one-stage检测器YOLOv3作为检测网络。与之前的版本相比,YOLOv3基于ResNet的思想设计了darknet-53,由连续的3×3和1×1卷积层组成。通过对多尺度特征图进行预测,实现多尺度训练,从而进一步提高检测精度,特别是对小目标的检测精度。采用了与原来相同的网络结构和损失函数。

Hybrid Data Training

为了在正常和恶劣天气条件下都能达到理想的检测性能,采用了IA-YOLO混合数据训练方案。算法1总结了提出方法的训练过程。

在输入到网络进行训练之前,每一幅图像都有2/3的概率被随机添加某种雾或被转换为微光图像。无论是普通的还是合成的低质量训练数据,整个过程都是端到端训练,使用YOLOv3检测损失,确保IA-YOLO中的所有模块都可以相互适应。

因此,CNN-PP模块在不手动标注GT真实图像的情况下,受到检测损失的弱监督。混合数据训练模式确保IA-YOLO可以根据每张图像的内容自适应处理图像,从而实现较高的检测性能。

二、实验

指标如下:

可视化结果:

参考文献

[1].Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

本文来自:公众号【集智书童】 作者:ChaucerG

Illustrastion by By Marina Moguls‍kaya from icons8

-The End-

扫码观看!

本周上新!

关于我“门”

将门是一家以专注于发掘、加速及投资技术驱动型创业公司的新型创投机构,旗下涵盖将门创新服务、将门技术社群以及将门创投基金。

将门成立于2015年底,创始团队由微软创投在中国的创始团队原班人马构建而成,曾为微软优选和深度孵化了126家创新的技术型创业公司。

如果您是技术领域的初创企业,不仅想获得投资,还希望获得一系列持续性、有价值的投后服务,欢迎发送或者推荐项目给我“门”:

⤵一键送你进入TechBeat快乐星球

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

THE END
0.雾霾天气下的车牌图像识别.docx但我国的雾霾天气越来越多,尤其是北方城市,如何实现雾下车牌的准确识别已成为一个非常重要的研究方向。 在此背景下,本文以雾霾天气下的车牌识别为研究方向,并根据许多学者的经验,基于Retinex理论,研究了雾霾图像的增强处理方法。在预处理过程中,对车牌的增强、二值化和边缘检测进行了研究。然后采用形态学、投影和区域jvzquC41o0hpqt63:0ipo8mvon532;7133751A6492=139<2276247xjvo
1.雾霾天气下图像的清晰化方法研究雾霾天气下图像的清晰化方法研究,去雾,图像增强,图像复原,Retinex,暗原色先验,随着图像处理技术的不断发展,户外视觉系统得到了广泛的应用。然而,现有的视频监控、目标跟踪、智能导航等户外视觉系统都对天气jvzquC41ycv/ewpk0pku1uzpygt.39672262:@3jvor
2.雾霾下的图像去雾技术:现状挑战与前景,2.数据集:去雾数据集大都为合成数据集,即在清晰图像中合成雾霾作为训练集,导致现实雾霾图像恢复不真实,所以需要更真实的数据集; 3.泛化性:模型可以更多适应不同场景:如遥感/室内/夜间/水下; 4.多任务:模型可以解决多个不同任务:如去雾/去雨/增强/检测等。 入行不深,本文根据个人理解所作,其中对于方法评价以及展望的内容包含部分的个人理解,请各位加以指正jvzquC41dnuh0lxfp0tfv8vsa8>85=;641gsvrhng1jfvjnnu1746B57;:=
3.一种基于MDARNet的低照度图像增强方法∗Toggle Sidebar Find Previous Next of 0 Presentation ModeOpenPrintDownloadCurrent View Tools Zoom Out Zoom In Automatic ZoomActual SizePage FitPage Width50%75%100%125%150%200%300%400%jvzquC41yy}/lxx0qtm/ew4lqu5bt}neng5qfo48338
4.一种基于生成对抗网络的无人机图像去雾算法今日头条一种基于生成对抗网络的无人机图像去雾算法-摘要: 无人机所采集的图像容易受到雾霾、雾气等阴霾天气干扰,造成图像质量下降。针对阴霾天气下无人机采集图像的质量下降问题,提出了一种新颖的基于生成对抗网络的图像去雾方法。本方法设计了新式生成网络和判别网络,生成网络jvzquC41yy}/gujehctt0lto1pkxu86:26:5;7mvon
5.【公司项目代码】matlab基于多尺度retinex算法的图像去雾代码。已利用直方图均衡化、retinex算法雾霾图像去雾,从而使图像清晰。工作环境 Matlab 上传者:weixin_42665725时间:2021-09-30 matlab基于多尺度retinex算法的图像去雾代码。已测试,能直接运行,能较好得去雾并保留原图色彩.zip matlab基于多尺度retinex算法的图像去雾代码。已测试,能直接运行,能较好得去雾并保留原图色彩.zip jvzquC41yy}/k}j{g0ipo8wguq{sen4mv|;2966383876>
6.计算机辅助设计与图形学学报2018年03期融合候选区域提取与SSAE深度特征学习的心脏MR图像左心室检测王旭初;牛彦敏;赵广军;谭立文;张绍祥; NSCT域分类预处理的改进非局部均值去噪算法王倩;彭海云;秦杰;柴争义; 基于两阶段支持向量回归的快速噪声水平估计算法徐少平;曾小霞;唐祎玲; 单幅夜间弱照度雾霾图像的复原算法汤春明;董燕成;孙欣;林骏;廉政; jvzquC41yy}/ewpk0eun0ls1Lq{spjq1K/O3/SXLH/813A2250nuo
7.版本?RAW数码相机处理软件免费使用教程图形图像软件教程将“除雾”滑块添加到调整项中,以去除由大气水分或蒸汽引起的模糊图像的雾霾。5、简单任务的理想完成-一键即可调整的“自动调整按钮”。-配备1张照片的可调节HDR功能。-精细的色彩控制器,可用于调整每种特定的颜色。-使用斑点工具轻松清除不需要的物体,例如可能出现的灰尘。-可以从“拍摄信息”(例如拍摄日期)中搜索要调整的图像jvzquC41yy}/lk:30pku1|thvli0;982834ivvq
8.改进生成对抗网络在场景图像转换中的应用传统的场景图像转换算法大多是基于模型的方法. 孙毅刚等[1]提出一种基于改进的snake模型, 该算法利用模糊连接度准确找到雨雪轮廓点, 并通过模糊相似度函数确定雨雪边界, 实现雨雪场景图像转换. 刘杰平等[2]基于大气散射模型, 提出了一种适应人眼视觉特征的HSI色彩空间估计大气光和透射率, 实现雾霾场景图像转换. 费jvzquC41yy}/e6x/c0usi7hp1jznn87243541@=380nuou
9.One21附激活教程+补丁下载地址图形图像软件教程只需一个滑块,即可消除雾霾并降低图像的平整度。强大的新型除雾工具可自动调整平面照片中的对比度,饱和度和其他元素。 3、ProStandard配置文件 拥有最真实的色彩,忠于现实生活。这些新的相机配置文件可以比以往更好地保留原始色彩,从而保护色相免受对比度变化的影响。人像和产品摄影的救星-以及任何依赖真实色彩的图像。jvzquC41yy}/lk:30pku1|thvli09B78524ivvq
10.图像去雾:15张雾霾图像及其处理技术简介:图像去雾技术用于提升因大气散射导致模糊的图像清晰度,对于视觉效果提升及自动驾驶、监控等领域至关重要。文章介绍了图像去雾的基本原理和方法,包括暗通道先验法、图像增强、物理模型和深度学习方法,并强调了雾霾图像库在算法研究中的重要性。 1. 图像去雾技术概述 jvzquC41dnuh0lxfp0tfv8|gkzooa<;4:;=548ftvkimg8igvcomu86727<94@5